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Società Italiana di Fisica
Springer-Verlag 2000

Surface effects in nanoparticles: application to maghemite
γ-Fe2O3

H. Kachkachi1a, A. Ezzir1, M. Noguès1, and E. Tronc2
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Abstract. We present a microscopic model for nanoparticles, of the maghemite (γ-Fe2O3) type, and per-
form classical Monte Carlo simulations of their magnetic properties. On account of Mössbauer spectroscopy
and high-field magnetisation results, we consider a particle as composed of a core and a surface shell of con-
stant thickness. The magnetic state in the particle is described by the anisotropic classical Dirac-Heisenberg
model including exchange and dipolar interactions and bulk and surface anisotropy. We consider the case
of ellipsoidal (or spherical) particles with free boundaries at the surface. Using a surface shell of constant
thickness (∼ 0.35 nm) we vary the particle size and study the effect of surface magnetic disorder on the
thermal and spatial behaviors of the net magnetisation of the particle. We study the shift in the surface
“critical region” for different surface-to-core ratios of the exchange coupling constants. It is also shown that
the profile of the local magnetisation exhibits strong temperature dependence, and that surface anisotropy
is responsible for the non saturation of the magnetisation at low temperatures.

PACS. 75.50.Tt Fine particle systems – 75.30.Pd Surface magnetism – 75.10.Hk Classical spin models

1 Introduction

Surface effects in a nanoparticle are of great importance
since they dominate the magnetic properties and become
more important with decreasing size of the particle. In
particular, the picture of a single-domain magnetic par-
ticle where all spins are pointing into the same direction,
leading to coherent relaxation processes, is no longer valid
when one considers the effect of misaligned spins on the
surface on the global magnetic properties of the particle.
Indeed, even for strong exchange interactions the surface
is responsible for coordination defects, and in a particle of
radius of the order of 4 nm, 50% (in the γ-Fe2O3 nanopar-
ticles) of atoms lie on the surface, and therefore the effect
of the latter cannot be neglected.

The magnetisation near the surface is generally lower
than in the interior. This effect leads to a thermodynamic
perturbation in exchange interactions near the surface,
which can be sizable at high temperatures. In a finite
system, the effect of temperature introduces, in addition
to the usual renormalization of the spin-wave spectrum,
a spatial dependence of the magnetisation (see [1] and
references therein for the case of semi-infinite cubic crys-
tals). Indeed, the symmetry breaking at the surface results
in a surface anisotropy. In most cases, this happens to
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be strong enough as to compensate for the work needed
against the exchange energy that prefers full alignment,
and it is conceivable then that the magnetisation vector
will point along the bulk easy axis in the core of the parti-
cle, and will then gradually turn into a different direction
when it approaches the surface. In addition to the ex-
change interactions, which are the strongest interactions
between atoms in a magnetic system, there are also the
purely magnetic dipole interactions between the magnetic
moments of the atoms and the interactions between the
magnetic moments and the electric field of the crystal lat-
tice (spin-orbit interactions). The last two types of inter-
actions are relativistic in origin and therefore correspond
to energies that are much smaller than the exchange en-
ergy on a short length scale, but as they are long range
interactions they lead, in general, to non negligible contri-
butions. Indeed, these interactions play an important role
in that they introduce a preferred direction in the system
as they correspond to a Hamiltonian (see below) that is
not invariant under rotation operations. In other words,
they lead to the appearance of an anisotropy energy, i.e.
the dependence of the total energy of the system on the
direction of magnetisation. Moreover, the most important
feature of the relativistic interactions is that they change
the magnetic moment of an atom from one site to another,
and hence introduce a non uniform spatial distribution
of the magnetic moment in the system. The treatment
of the dipole-dipole interactions [2] leads to two energy
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terms corresponding to the volume and surface charges.
In a small magnetic system, such as a nanoparticle, only
the second contribution is important since it accounts for
the shape anisotropy, and the former becomes negligible
as one integrates over a small volume (see a detailed dis-
cussion in [3] and references therein).

Therefore, it is necessary to take into account all dif-
ferent contributions to the energy, exchange and dipolar
interactions, bulk and surface anisotropies, in any study
of spatial distributions of the magnetisation in a small
magnetic system.

One of our ultimate goals is to understand the effect
of surfaces on the thermodynamic and spatial behaviors
of the magnetisation in small systems, since this is also of
crucial importance to the study of the dynamics of such
systems where the surface effects are considerable. In this
case, the dynamics is rendered more complicated by the
additional (metastable or stable) magnetic states corre-
sponding to the surface configurations.

According to Mössbauer spectroscopy performed by
Morrish et al. (see [4] for a review, and also the semi-
nal work by Coey [5]), the iron cations at the surface of
the γ-Fe2O3 particles have a noncolinear magnetic struc-
ture from 4.2 K to room temperature. The Mössbauer-
spectroscopy analysis performed in [6] on γ-Fe2O3 par-
ticles show that the spectrum contains two components,
one associated with the bulk and the other with iron atoms
on the surface. The latter seems to disappear at temper-
atures in the range 30-75 K, depending on the mean di-
ameter of the particle assembly. From these Mössbauer-
effect analyses it was also inferred that the surface shell
has a thickness of about 0.35 nm, independently of the
particle volume. This fact will be used in our simulations
to determine the ratio of the surface and core number of
atoms. In addition, measurements of the magnetisation
at high fields performed on the γ-Fe2O3 nanoparticles [7]
(see also [8] for cobalt particles) have shown that the mag-
netisation is strongly influenced by the surface effects, de-
pending on the particle size. In Figure 1 we show the field
and thermal variation of the magnetisation for different
particle sizes. In Figure 1a we see that there is a sudden
increase of the magnetisation as a function of the applied
field when the temperature reaches 70 K, and that the
magnetisation does not saturate at the highest field value,
i.e. 5.5 T. In Figure 1b there is an important increase of
the magnetisation at low temperatures. In Figure 1c the
thermal behaviour of the magnetisation at 5.5 T is shown
for samples with different mean diameter. There we see
that the smaller is the mean diameter of the particle the
more important is the increase of the magnetisation at
very low temperatures. This can be explained by the fact
that the surface component corresponds to a state with
canted atomic moments at low temperatures [5,6].

Furthermore, open hystereses were observed [9] in
the nickel ferrite particles (NiFe2O4) up to fields of 16
T, while the anisotropy field of the bulk sample is ut-
most 4 × 10−2 T. The authors consider that the core
spins are colinear whereas those on the surface are mis-
aligned. In the case of γ-Fe2O3 particles, however, no such

irreversibility in the magnetisation hysteresis loop was
observed [6,9].

Therefore, according to Mössbauer spectroscopy and
high-field magnetisation measurements, we may think of a
particle as containing a magnetically disordered surface of
a certain width and a core more or less ordered depending
on the size of the particle. The net magnetisation of the
particle is given by the (weighed) sum of the contributions
from the surface and the core. The increase of the surface
contribution at low temperatures becomes more important
with decreasing size of the particle, as shown in Figure 1c.

In this work, we compute the thermal behavior of the
different contributions to the magnetisation due to the
surface and core for different values of exchange couplings
and different surface-to-volume ratios of the number of
spins. We also compute the spatial variation of the mag-
netisation at different temperatures and the specific heat
for different sizes. All calculations are performed in zero
magnetic field.

2 Model for magnetic particles

2.1 Hamiltonian

As was discussed in the introduction, it is well-
established [2,3] that any theory dealing with the spatial
magnetisation distribution must consider all three energy
contributions, exchange, anisotropy and magnetostatic,
and that there is no obvious reason for neglecting any one
of these. However, it should be emphasised that in very
small particles the exchange interactions are too strong
to allow for subdivision into domains, so that the magne-
tostatic energy term is considered here only in order to
account for the shape anisotropy in the case of ellipsoidal
particles. It should also be stressed, as discussed in the in-
troduction, that because of the surface anisotropy and the
symmetry breaking at the surface, there is no reason to
consider the exchange interactions on the surface as equal
to those in the core, and thereby the particle may acquire
a non uniform distribution of the magnetisation.

Therefore, to take account of all these energy con-
tributions, we propose a model, based on the classi-
cal anisotropic Dirac-Heisenberg (exchange and dipolar)
Hamiltonian, describing the spinel structure of the (spher-
ical or ellipsoidal) ferrimagnetic nanoparticles (e.g., γ-
Fe2O3). In this article the calculations are performed us-
ing classical Monte Carlo simulations of the magnetisation
thermal behavior of the particle with open boundaries at
the surface.

So, the exchange, anisotropy and Zeeman contri-
butions are given by the following anisotropic Dirac-
Heisenberg Hamiltonian

HDH = −
∑
i,n

∑
α,β=A,B

Jαβ Sαi · Sβi+n −K
Nt∑
i=1

(Si · ei)2

− (gµB)H
Nt∑
i=1

Si, (1)
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Fig. 1. (a) Magnetisation as a function of the magnetic field of a diluted assembly of γ-Fe2O3 nanoparticles with a mean
diameter of 2.7 nm. (b) Thermal variation of the magnetisation extracted from a) at a field of 55 kOe. (c) Thermal variation of
the magnetisation in a field of 55 kOe for three samples with different mean diameters (2.7, 4.8, 7.1 nm).

where Jαβ (positive or negative) are the exchange coupling
constants between (the α, β = A,B) nearest neighbors
spanned by the unit vector n; Sαi is the (classical) spin
vector of the αth atom at site i; H is the uniform field
applied to all spins (of number Nt) in the particle, K > 0
is the anisotropy constant and ei the single-site anisotropy
axis (see definition below). A discussion of the core and
surface anisotropy will be presented below. In the sequel
the magnetic field will be set to zero.

To the Dirac-Heisenberg Hamiltonian we add the pair-
wise long-range dipolar interactions

Hdip =
(gµB)2

2

∑
i6=j

(Si · Sj)R2
ij − 3 (Si ·Rij) · (Rij · Sj)

R5
ij

(2)

where g is the Landé factor, µB the Bohr magneton and
Rij the vector connecting any two spins on sites i and j
of the particle, Rij ≡ ‖Rij‖.

2.2 Method of simulation

The particle we consider here is a spinel with two dif-
ferent iron sites, a tetrahedric Fe3+ site (denoted by A)
and an octahedric Fe3+ site (denoted by B). The nearest
neighbor exchange interactions are (in units of K) [10,9]:
JAB/kB ' −28.1, JBB/kB ' −8.6, and JAA/kB ' −21.0.
These coupling constants are used in the Dirac-Heisenberg
Hamiltonian HDH in order to model the phase transition
from the paramagnetic to ferrimagnetic order as the tem-
perature is lowered down to zero through Tc ' 906 K.
In the spinel structure an atom on site A has 12 nearest
neighbors on the sublattice B and 4 on the sublattice A,
and an atom on site B has 6 nearest neighbors on A and 6
on the B sublattice; the number of B sites is twice that of

sites A. The nominal value of the spin on sites A and B is
5/2, and this justifies the use of classical spins. We have
also taken account of 1

3 of lacuna for each two B atoms
randomly distributed in the particle. The nanoparticle we
have studied contains Nt spins (' 103 − 105), and its ra-
dius is in the range 2-3.5 nm. Our model is based on the
hypothesis that the particle is composed of a core of ra-
dius containing Nc spins, and a surface shell surrounding
it that containsNs spins, so that Nt = Nc+Ns. Thus vary-
ing the size of the particle while maintaining the thickness
of the surface shell constant (∼ 0.35 nm), is equivalent to
varying the surface to total number of spins, Nst = Ns/Nt,
and this allows us to study the effect of surfaces of differ-
ent contributions. All spins in the core and on the sur-
face are identical, but interact via the, a priori, different
couplings depending on their locus in the whole volume.
We will consider both cases of identical interactions, and
that of the general situation with different interactions on
the surface and in the core. Although we treat only the
crystallographically “ideal” surface, we do allow for per-
turbations in the exchange constants on the surface. This
is meant to take into account, though in a somewhat phe-
nomenological way, the possible defects on the surface,
and the possible interactions between the particles and
the matrix in which they are embedded. In [9] it was as-
sumed that the pairwise exchange interactions are of the
same magnitude for the core and surface atoms, but there
was postulated the existence of a fraction of missing bonds
on the surface. On the other hand, we consider that the
exchange interactions between the core and surface spins
are the same as those inside the core. We also stress that
we are only concerned with non interacting particles, so
we ignore the effect of interparticle interactions on the
exchange couplings at the surface of the particle.

In our simulations we start with a regular box
(X × Y × Z) of spins with the spinel structure having
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Fig. 2. Normalized distribution of the coordination number in
a spherical and ellipsoidal particle for Nst = 40%.

the properties mentioned above, and then given the ra-
dius or total number of spins in the particle, we cut in a
sphere or an ellipsoid. We choose the center of the particle
to lie at one of the lattice sites. In all cases free bound-
ary conditions are used, and thus a spin is considered as a
core or surface spin depending on whether it has or not its
full coordination number. Figure 2 shows the distribution
of the coordination numbers in a spherical and ellipsoidal
particle.

Therefore, in our simulations each spin has a structure
associated with it that contains the coordinates of the cor-
responding site, the nature of the site in the spinel struc-
ture (i.e. A or B), its locus (core or surface), the number of
its nearest neighbors, and the total number of such sites.
Thus, once the structure of each spin is defined, the spins
outside of the sphere or the ellipsoid are discarded. This
accomplishes the simulation of the crystal structure and
shape of the particle. Next, we proceed with the Monte
Carlo calculations.

The classical Monte Carlo method based on the
Metropolis algorithm is now a standard method and
detailed descriptions can be found in [11]; so here we sum-
marize only the main procedure. We calculate the expec-
tation value of a function f({Si}) of the spins Si

〈f〉 =
Tr [exp(−H/kBT )f ]

Tr exp(−H/kBT )
(3)

by generating a Markov chain of spin configurations {Si}
of the system and taking the average

f̄ =
1
L

L∑
c=1

f({Sci}). (4)

From any initial (random in our case) configuration c
we generate a trial configuration by choosing the spin
coordinates of a randomly chosen lattice site i by (α =
x, y, z)

Sα,c+1
i =

Sα,ci +Xα∆√∑
α

(Sα,ci +Xα∆)2
, (5)

where Xα are random numbers satisfying −1 ≤ Xα ≤ 1.
Then the energy change δE produced by this move is cal-
culated from equations (1) and (2). If δE ≥ 0, one com-
pares exp(−δE/kBT ) with a random number ς, 0 ≤ ς ≤ 1.
If ς < exp(−δE/kBT ) or δE < 0, the trial configuration is
accepted as new configuration, otherwise it is abandoned
and the old one is counted once more. It is shown [11] that
this prescription leads to

〈f〉 = lim
L→∞

f̄ . (6)

Since one uses a finite L, it is essential to choose the ar-
bitrary step parameter ∆ suitably so as to exclude an
appropriate number of initial configurations from the av-
erage (4), and to estimate the “statistical error” in a reli-
able way. In our case, we always start with a configuration
of randomly oriented spins and adjust ∆ so that 75% of
the moves were successful, and it turned out that about
3 000 Monte-Carlo steps per spin were sufficient to yield
an accuracy of a few percent for the local magnetisation.

It is well-known, of course, that spontaneous symme-
try breaking, which is usually accompanied by a change
from a disordered state at high temperatures to a sponta-
neously ordered state at temperatures below the critical
one, can occur only in the thermodynamic limit. In a finite
magnetic system the magnetisation at zero field

m(T,H = 0) =
1
N

N∑
i=1

〈Si〉T,H=0 (7)

vanishes at all nonzero temperatures irrespective of the
number N of spins in the system. In particular, even above
the critical temperature (of the bulk system) a small mag-
netisation is found by Monte Carlo calculations, due to
fluctuations which in a finite system observed over a finite
time have not completely averaged out [11]. However, at
very low temperatures there exist, even in an inhomoge-
neous system, clusters of spins aligned with respect to each
other, and there should exist an intrinsic magnetisation.
This is usually defined as follows

M =

√√√√〈( 1
N

N∑
i=1

Si

)2〉
. (8)

Of course, in a finite system the magnetisation M is
nonzero at all temperatures. Even at temperatures well
above the critical temperature one still obtains M ∝
1/
√
N , and this leads to the appearance of a magneti-

sation tail at high temperatures. The magnetisation M
tends to that of the bulk system (infinite size) in the limit
N →∞. In the present case, we calculate the magnetisa-
tion defined in (8) for the core and surface by summing
over the corresponding spins.

Anisotropy energies

In both cases of a spherical and ellispoidal particle, we
consider a uniaxial anisotropy in the core and single-site
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anisotropy on the surface. The easy axis in the core is
chosen along our z reference axis, and the sites on the
boundary have uniaxial anisotropy, with equal anisotropy
constant Ks, whose axes ei are chosen to point outward
and normal to the surface [9,12]). More precisely, we de-
fine for each spin a unit gradient vector on which the spin
magnetic moment has to be projected. In the case of a
spherical particle these anisotropy axes are along the ra-
dius joining the center of the particle to the considered
surface site. For an ellipsoidal particle the easy direction
in the core is taken along the major axis of the ellipsoid,
which is also along the z direction. The bulk anisotropy
constant was estimated by many authors (see e.g. [13] and
references therein) to be K1 ' 4.7× 104 erg/cm3. In our
simulations we normalized this constant to the number of
sites and in units of K, kc ≡ (Kc/kB) ' 8.13 × 10−3 K,
kB being the Boltzmann constant. On the other hand, the
surface anisotropy has not been determined experimen-
tally in magnetic oxides, but it has become clear, however,
that the corresponding contribution is very large as com-
pared with the bulk one. In our calculations we took ks ≡
(Ks/kB) ' 0.5 K; the corresponding surface anisotropy
constant Ks was estimated to be ' 0.06 erg/cm2

(see [14,15]). In [9] ks was taken in the range 1-4 K, but for
these higher values of surface anisotropy the authors ob-
tained high-field irreversibility whereas the experimental
results (also presented in [9]) show none for the γ-Fe2O3

particles.
Finally, in the case of a very small ellipsoidal particle,

as discussed at the beginning of Section 1, the effect of
the dipolar interactions Hdip boils down to a mere shape
anisotropy, which is absent in a spherical particle. There-
fore, the magnetostatic energy of an ellipsoid of semi-axes
X
2 ,

Y
2 ,

Z
2 , can be written as [2,3]

Emag =
1

2V
(
DxM

2
x +DyM

2
y +DzM

2
z

)
(9)

where Dα, α = x, y, z, are the demagnetizing factors, Mα

the components of the net magnetisation, and V the vol-
ume of the particle, which is equal to Nt in our calcu-
lations. If all semi-axes are different it is not possible to
express the D′s in closed form. However, this is possible
in the case of a prolate or oblate spheroid. In the case of a
prolate spheroid, as is very common in permanent-magnet
materials, i.e. Z > X = Y, the demagnetizing factors are
given by [16]

Dz = 4π
1− e2

2e3

[
log
(

1 + e

1− e

)
− 2e

]
, (10)

Dx = Dy =
1
2

(4π −Dz),

where e =
√

1− (X/Z)2, 0 < e < 1, is the eccentricity of
the ellipsoid. In these calculations we assumed that the
easy axes of the magnetocrystalline and shape anisotropy
are the same, though this is not the case in general.

We have found that using the long-range dipolar in-
teractions Hdip involving all possible pairs of atoms in the
particle, or the macroscopic magnetostatic energy Emag

yields within numerical errors, the same results, only that
the former contribution is much more time consuming
than the latter.

2.3 Results and discussion

2.3.1 Thermal variation of the magnetisation

In Figures 3a-c, we plot the computed thermal variation
of the core and surface contributions to the magnetisation
(per site) as a function of the reduced temperature τcore ≡
T/T core

c , T core
c being the highest core “critical tempera-

ture”, forNt = 909, 2009, 3766 with Nst = 53%, 46%, 41%,
respectively. These values of Nst have been determined by
the fact that the thickness of the surface shell is constant
(∼ 0.35 nm), according to Mössbauer-effect analysis [6].
They correspond to a diameter of circa 4, 4.6 and 6 nm,
respectively.

In Figure 3d we plot the mean magnetisation defined
as Mmean ≡ (NsMsurface + NcMcore)/Nt as a function of
τcore, for the same values of Nst as before. The exchange
coupling in the core (i.e. JAA, JAB, JBB), generically de-
noted by Jc, are taken as 10 times those on the surface,
denoted by Js. Since there is no experimental estimation of
the exchange couplings on the surface, the choice of such
Js was guided by the fact that the critical temperature of
the bulk material is circa 906 K, while the hypothetical
“surface transition” occurs in the temperature range of 30-
75 K (which is a factor of more than 10 smaller) according
to Mössbauer spectroscopy and high-field magnetisation
measurements. Nevertheless, we have also considered the
effect of other ratios Jc/Js (see below).

We see that the surface “critical region”, corresponding
to the would-be magnetic phase transition on the surface
is in a range of temperatures lower than the critical tem-
perature of the core. This is expected from the fact that
since the molecular field acting on a surface spin is lower
than the one acting on a core spin, as a consequence of the
lower coordination number at the surface and hence the
change in crystal field thereon [1,17], and also because of
the fact that Js are taken smaller than Jc. This is in agree-
ment with the results of Mössbauer spectroscopy and the
magnetisation measurements at high fields, since the sur-
face component has a “critical temperature” in the range
30−75 K while for the core component the critical temper-
ature is much higher (' 906 K). Note that both transitions
are smeared because of the finiteness of the system size
(see discussion after Eq. (8)). We also note that the sur-
face magnetisation Msurface decreases more rapidly than
the core contribution Mcore as the temperature increases,
and has a positive curvature while that of Mcore is nega-
tive, as is most often the case. Moreover, it is seen that
even the (normalized) core magnetisation per site does not
reach its saturation value of 1 at very low temperatures,
and this can be explained by the fact that the magnetic
order in the core is disturbed by the relative disorder on
the surface, or in other words, the magnetic disorder starts
at the surface and gradually propagates into the core of
the particle (see Fig. 6 below). The magnetic disorder on
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Fig. 3. (a)-(c) Thermal variation of the surface and core magnetisation (per site) (Fig. 3d) and mean magnetisation as obtained
from the Monte Carlo simulations of an ellipsoidal nanoparticle. The anisotropy constants are given in the text; the exchange
interactions on the surface are taken to be 1/10 times those in the core.

the surface is, of course, enhanced by the single-site sur-
face anisotropy which tends to orientate the spins normal
to the surface. In Figure 3d we see that the more impor-
tant is the surface contribution the more enhanced and
rapid is the raising of the mean magnetisation at low tem-
peratures, and this behavior bears some resemblance to
Figure 1c.

In Figure 4 we plot the core magnetisation of an el-
lipsoidal nanoparticle with Nt = 909, 3766, 6330 and
the magnetisation of the isotropic system with the spinel
structure and periodic boundary conditions1 as functions
of the reduced temperature τPBC ≡ T/TPBC

c , and Nst =
53%, 41%, 26%. Comparing the different curves, it is seen
that both the critical temperature and the value of the
magnetisation are dramatically reduced in the core of the
particle. The reduction of the critical temperature is obvi-
ously due to the finite-size and surface effects [11]. There
is a size-dependent reduction of the critical temperature
by up to 50% for the smallest particle. The same result
has been found by Hendriksen et al. [18] for small clus-
ters of various structures (bcc, fcc, and disordered) using
spin-wave theory. As to the magnetisation, the reduction
shows that the core of the particle does not exhibit the
same magnetic properties as the bulk material, and as
discussed before, it is influenced by the misaligned spins
on the surface.

1 This system is a perfectly ferrimagnetic material with peri-
odic spinel structure and without vacancies, though such ma-
terial does not exist in reality since all spinels present some
degree of vacancy. This system will be referred to in the sequel
as the PBC system.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0  M
PBC

 M
core

 (N
t
 = 909) 

 M
core

 (N
t
 = 3766)

 M
core

 (N
t
 = 6330)

  

M
ag

ne
tis

at
io

n

τPBC

Fig. 4. Thermal variation of the magnetisation of the PBC
system with Nt = 403, and the core magnetisation for Nt =
909, 3766, 6330 with Nst = 53%, 41%, 26%, respectively, as
functions of τPBC (see text). The exchange interactions on the
surface are taken equal to 1/10 times those in the core.

In Figure 4 we can also see that the higher Nt the lower
the magnetisation in the critical region and the higher
the temperature at which the magnetisation approaches
zero, and this is consistent with the fact that M ∝ 1/

√
Nt

at high temperatures, as discussed earlier. However, the
increase of the critical temperature with Nt is not as
clear-cut as it could be expected, and this can be under-
stood by noting that the disordered surface (Js = Jc/10,
small coordination numbers, and single-site anisotropy)
strongly influences the magnetic order in the core through
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Fig. 5. The computed thermal variation of the surface contri-
bution to the net magnetisation of an ellipsoidal nanoparticle
as a function of τ core for Js = Jc/2, Jc, 2Jc (see text).

the relatively strong exchange couplings between surface
and core spins, which are equal to those in the core.

2.3.2 Effect of the ratio Jc/Js

In Figure 5 we plot the thermal variation of the surface
magnetisation as a function of the reduced temperature
τcore for Js = Jc/2, Jc and 2Jc, and Nt = 5269, Nst =
40%. Here the thickness of the surface shell is greater than
0.35 nm, and is not taken from experiments, contrary to
the values in Figure 3. The reason for taking such Nst is
merely to compare the results for surfaces with different
thickness. At any rate, our aim here is to maintain Nst

fixed to a given value and vary the ratio Jc/Js.
We see that the surface critical region is shifted to

higher temperatures upon increasing Js, and only when
Js = 2Jc that both the core and surface magnetic “phase
transitions” occur in the same temperature range, i.e.
τcore ' 1. It is worth noting that the weaker the exchange
interactions on the surface the lower the magnetisation
of the latter. This result remains the same upon lowering
the surface width. In this case the number of spins having
smaller coordination numbers, and hence weaker effective
exchange energy, i.e. those spins on the outer shell of the
particle, is very small as compared with the rest of spins
in the particle. Moreover, we may think that the spins
on the outer shell follow the (strong) molecular field cre-
ated by the other (inner) spins constituting a relatively
ferrimagnetically ordered core. Setting Jc = λJs, we may
determine the coefficient λ at which the transition regions
of the core and surface overlap. This may be done using
the simple, though time consuming, cumulant method in-
troduced a few years ago by Binder (see [11] for a review).

2.3.3 Profile of the magnetisation

We have determined the spatial variation of the local mag-
netisation of a spherical particle of a fixed radius as we
move from the center out onto the surface, at different
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Fig. 6. Spatial variation of the local magnetisation of a spher-
ical nanoparticle of 3140 spins, as a function of the radial dis-
tance, for τ core � 1, τ core = 0.5, and τ core ' 1−.

temperatures. At nearly zero temperature (τcore � 1), the
local magnetisation decreases with increasing radial dis-
tance in the particle. It starts from the saturation value
of an iron atom (in fact, we computed the mean value
of A and B atoms, to take into account the possibility
of starting at either atom) at the center of the particle
and decreases down to the value of a surface atom. Note
that what is plotted in Figure 6 is in fact the (normal-
ized) projection of the atomic magnetic moment along the
easy axis (z-axis for the core, and normal for the surface
spins), which is proportional to cos θ, and thus Figure 6
also shows the spatial evolution of the orientation of the
magnetic moment inside the particle as the radial distance
is varied.

The decreasing of the local magnetisation confirms
what was said before, that is even at very low temper-
ature the surface is in a magnetic order which is differ-
ent from that in the core, and as discussed earlier, the
misalignement of spins starts at the surface and gradu-
ally propagates into the core. This could be related with
the gradual canting of spins confirmed by Mössbauer spec-
troscopy [4–6] even at 4.2 K. As the temperature increases
(τcore = 0.5, τcore ' 1−), the local magnetisation exhibits
a jump of temperature-dependent height, and continues
to decrease. Since the local magnetisation depends on the
direction of the radius vector, especially in an ellipsoidal
particle, the curves in Figure 6 present, in addition to the
usual numerical inaccuracy (especially for τcore ' 1−),
some fluctuations due to the spatial non homogeneities
inherent to the lacunous spinel structure of the γ-Fe2O3

particles (1
3 for each two B atoms, randomly distributed).

2.3.4 Specific heat

In Figure 7 we plot the computed specific heat of the PBC
system (Nt = 403) and that of an ellipsoidal nanoparticle
with Nt = 909, 3766, 6330 (with the corresponding val-
ues of Nst given earlier). There is a transition marked
by a sharp peak for the PBC system and a broad peak
for the three particle sizes. This broadening is an obvious
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Fig. 7. Thermal variation of the specific heat of the PBC
system with Nt = 403, and that of an ellipsoidal nanoparticle
with Nt = 909, 3766, 6330, and for the same energy parameters
as in Fig. 3).

illustration of the finite-size effects. Note also the shift by
50% to lower temperatures of the critical region, as in the
magnetisation thermal behavior in Figure 4.

We are intending to prepare appropriate samples for
the specific heat measurements. To our knowledge, such
measurements have never been performed on nanoparticle
assemblies.

3 Conclusion

We have presented a microscopic model for magnetic
nano-scale particles including exchange and dipolar inter-
actions, and bulk and surface anisotropy, and investigated
the thermal and spatial behaviors of the core and sur-
face magnetisation of a nanoparticle of different sizes, and
hence of different surface contributions. We have found
that the finiteness of the system size and free boundaries
lead to a non uniform magnetisation profile decreasing to-
ward the surface in the particle. Moreover, it turns out
that surface anisotropy also leads to non saturation of the
magnetisation at low temperatures.

In order to compare our results obtained for a single
nanoparticle with our experiments on dilute assemblies of
nanoparticles [7], and in particular to compare with the
curve of magnetisation vs. temperature given in Figure 1b,
we have to include the Zeeman energy term in our Hamil-
tonian and run our program for different particle sizes
with randomly distributed easy axes. Unfortunately, this
will require several days of CPU time, since a temperature
sweep takes about 30 hours (without dipolar interactions)
on a two-processor Alpha Work Station. It also remains to
study the interplay between finite-size and surface effects
in a nanoparticle of round shape (sphere or ellipsoid), as
is the case here, since for a box-shaped particle one can
treat separately finite-size and surface effects by consider-
ing both cases of free boundaries where these two effects
are mixed and that of periodic boundary conditions where
only the former are present. In the present case, it can be

seen from Figure 4 that the magnetisation of the PBC
system where only finite-size effects are present is larger
than the bulk magnetisation, while the magnetisation of
a (anisotropic) nanoparticle is lower. This implies, as was
analytically shown in [19] for a box-shaped particle with
simple-cubic structure, that finite-size effects yield a posi-
tive contribution to the magnetisation while surface effects
render a larger and negative contribution, resulting in a
net magnetisation that is lower than that of the bulk sys-
tem. In [20] it was also shown that the difference between
the finite-size and surface contributions is enhanced by
surface anisotropy, which leads to non saturation of the
magnetisation at low temperatures (see Figs. 3-5). Nev-
ertheless, already from the present single-particle prelimi-
nary study we can infer some conclusions about the effect
of the magnetically disordered surface on the global mag-
netic properties of nanoparticles. The surface contribution
to the magnetisation presents a rather different behavior
from the core contribution. Furthermore, even at very low
temperatures, the local magnetisation decreases with the
distance from the center, showing that the magnetic state
on the surface is definitely different from that in the core.
We have also shown that there is a drastic reduction of
both the critical temperature and the value of the mag-
netisation in the core of the particle. The reduction of
the critical temperature is obviously due to the finite-size
and surface effects. As to the magnetisation, the reduc-
tion shows that the magnetic properties of the particle
core are different from those of bulk material, because of
the strong influence of the misalignement of spins on the
surface, driven by symmetry breaking of the crystal field
and surface anisotropy, which propagates from the bound-
ary into the core. Finally, we note that our results on
the thermal and spatial behavior of the magnetisation are
in qualitative agreement with those obtained by Binder
et al. [21] for spherical particles with simple-cubic crys-
talline structure.

H.K. thanks L. Reynaud for his considerable help in these sim-
ulations and D. Garanin for his valuable remarks and sugges-
tions. The present numerical calculations have been performed
on the Alpha Work Station of the Genome Laboratory of the
University of Versailles to which we are greatly indebted.
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Ph.D. thesis of the Université Pierre & Marie Curie, July
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